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Abstract. In recent years several payment schemes have emerged for
anonymous communication systems such as AN.ON and Tor.
In this paper we briefly present a payment scheme that is deployed and
currently used by AN.ON. The main contribution of this paper is a se-
curity analysis of the most important cryptographic protocols involved
in the payment process. The analysis of the protocols shows that they
contain several weaknesses that need to be addressed to provide a fair
service. We show how an attacker can use the weaknesses to surf on
other’s credits. Finally, we propose a fix for the protocols in order to
withstand the encountered attacks.

1 Introduction

Many publications in the area of anonymous communication have been pub-
lished in the last decade. Most of them deal with anonymous routing mech-
anisms or with attacks on the latter. Besides theoretical work they have also
deployed anonymization networks based on the theoretical work. Two of the
most widespread deployed anonymization systems are Tor[7] and AN.ON[2].

For both systems it is understandably crucial to find operators willing to
cover the costs and the possible legal consequences of providing an anonymiza-
tion service. The Tor project is not commercial, therefore it can not pay the
operators itself. Thus, Tor strongly depends on volunteers willing to provide
servers in the network. Clearly, these circumstances make it more difficult to
find operators for the Tor network. To overcome these difficulties a payment
protocol for anonymous routing was proposed by Elli Androulaki et. al.[1].

In the case of AN.ON, a spin-off company named JonDos1 was founded in
2007. Its business model is to act as broker between the operators and the users of
the network. The company provides the operators of mixes, the service providing
network nodes, with the possibility of collecting money from the users for the
offered anonymization. This possibility creates an incentive for people to become
an operator for AN.ON.

Clearly, payment protocols must fulfill various requirements. One require-
ment is that the payment process does not compromise the anonymity of users.
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Another requirement is that the payment process must be fair, so none of the
parties should be able to betray other participants. To the best of our knowledge
there is no security analysis for AN.ON’s payment system available. Thus, we
will take a closer look on the used cryptographic protocols.

In this paper we formalize and examine the cryptographic protocols which
have been used since 2007 for the payment procedure in AN.ON. Our main focus
is to check whether the protocols fulfill their basic tasks or fail to do so. In the
latter case we also present some consequences of the encountered weaknesses.

This paper is divided into six sections. Section 2 describes the anonymization
concept of AN.ON and the idea of its payment concept. In Section 3 we present
our assumptions and our notation. Section 4 deals with the cryptographic pro-
tocols involved in the payment process, as well as some attacks on the protocols.
The reasons for the attacks and possible countermeasures are discussed in Sec-
tion 5. Section 6 concludes the paper.

2 Description of AN.ON

2.1 Anonymization Process

An objective of AN.ON’s anonymization system is to provide sender anonymity [9]
on the network layer for its users versus the receivers of messages. This means
that a receiver of a message cannot determine the network address, for example
the IP address, of a sender. In addition, AN.ON aims to provide relationship
anonymity with respect to the operators of AN.ON. Therefore, no operator can
determine which entities are communicating with each other.
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Fig. 1. Example for a cascade in AN.ON

In order to fulfill these objectives, so-called mix servers, also called mixes, are
introduced. The general task of a mix is to remove correlations between incoming
and outgoing messages[6]. In the deployed AN.ON system this is achieved solely2

2 Even though mixing of packets was mentioned in the original publication, it is nowa-
days deactivated due to performance reasons.
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by multiple layers of encryption (Fig. 1). A single layer of encryption is added
and removed respectively by a single mix.

A single mix between a sender and a receiver is not sufficient in order to
protect the users against the operator of a mix, since an operator is able to
link incoming and outgoing messages. Thereby he can uncover the relationship
between sender and receiver. This is avoided by chaining several mixes together
(see Fig. 1). Such a chain of mixes is called a cascade. Only if all operators in a
cascade collude they are able to revoke the user’s relationship anonymity.

It is important to notice that the order of the mixes in a chain is fix and
is chosen by the operators of the mixes. Therefore, a user cannot freely choose
the order of the mixes in a cascade. This has various advantages as well as
disadvantages[3]. One advantage is that all mixes in the cascade process the
same amount of packets. Another advantage is that each packet is sent along
the same route through the cascade. Both properties are mandatory for AN.ON’s
payment scheme.

2.2 Payment Concept

Cascades can be divided into free cascades and premium cascades. Free cascades
can be used by every user without any fee. However, they are often only operated
by one single operator. The free cascades do not guarantee any quality of service.
By contrast, premium cascades promise a minimum bandwidth for their users.
Beyond that premium cascades are more secure due to distributed and dedicated
servers as well as certified and independent operators.

Certainly, the additional service of the premium cascades is not for free. To
collect money from the users AN.ON has integrated a payment system which
bases upon a prepaid concept[10,8]. It is similar to the concept which is used in
a phone booth. When users connect to the cascade, they pay a small amount of
money in advance (up to 3 EuroCent) to the operators in order to transfer some
bytes (3 MB) over the cascade. Once they have almost consumed the bought
traffic volume they are able to purchase new traffic volume on the fly at the
cascade. The purchase of new traffic volume is possible without the termination
of existing connections.

However, the transfer of such small amounts of money is not efficient because
of the overhead and the lack of digital money. In order to solve the problem,
users buy some credit3 at a so-called payment instance. The payment instance
is operated by a trusted third party. Afterwards, users can spend their bought
credits on a premium cascade.

The first mix in a premium cascade is responsible for the accounting. Thus,
we call the first mix also accounting instance4. Due to the fact that every mix
in a cascade transfers the same amount of data, it is possible to implement the
accounting only at the first mix. Hence, behind the first mix the packets which
are related to the traffic of users are indistinguishable from packets in a free
cascade.
3 Current rates are between 2 Euro for 200 MB up to 40 Euro for 6,5 GB.
4 Accounting instances and payment instances are operated by different operators.
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3 Assumptions and Notations

We assume that the payment instance is trustworthy with respect to the pay-
ment. However, it is not trustworthy with respect to the anonymization process.
Furthermore, we assume that every participant in the protocol knows the public
key of the payment instance as well as the public key of the accounting instance.
Concerning the accounting instance, we assume that it may act malicious in the
payment process.

Cryptographic keys in this paper are denoted with prefix K. Kx represents
the public key of a principal X. K−1

x is the corresponding private key of the
principal X. In particular we assume that if a principal X owns K−1

x he auto-
matically possesses Kx. Kxy denotes a session key between a principals X and
Y . The term X 3 a, b, c denotes that the principal X is in possession of the items
a, b, c.

We assume a non-global but active adversary who cannot break crypto-
graphic primitives. Our assumed attacker model is equal to the attacker AN.ON
can withstand in its current implementation.

4 A Closer Look on the Protocols

4.1 Overview over the Protocols

AN.ON involves various cryptographic protocols in order to establish the pay-
ment process. This section describes in detail the most important protocols with
their assumptions, intentions and weaknesses.

Primergy

traffic repurchase

account check

settlement

payment initialization
mix authentication

charing account
account creation

authentication
balance check

payment instance

cascadeJAP

Fig. 2. Account creation protocol

Fig. 2 gives an overview over some protocols and parties which are involved
in the payment process. The protocols between the payment instance and the ac-
counting instance are integrated within the payment initialization protocol and
the traffic repurchase protocol respectively. Thus, both protocols are not de-
scribed separately. Please note, there are also protocols concerning the payment
process between mixes, but those remain unaccounted for. The following text
provides a detailed description of the protocols mentioned in Fig. 2.
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4.2 Account Creation

The account creation protocol involves a payment instance and a user which is
in AN.ON normally called JAP. The objective of this protocol is to create an
account for the user. An account is bound via a private key to the user. The
private key is created by the user prior to the protocol run. Only with the private
key a user is later on able to prove her ownership of the account and subsequently
buy traffic volume from an accounting instance.

In order to attest that a public key belongs to a valid, but maybe uncharged
account, the payment instances issue a certificate for the public key. The cer-
tificate should only be issued by the payment instance if it is convinced that a
corresponding private key exists.

Fig. 3(a) presents a message sequence chart of the account creation protocol.
We assume the following preconditions for a protocol run. Firstly, the payment
instance possesses its own key pair (Kp, K

−1
p ). Secondly, a user holds the public

key (Kp) of the payment instance. Lastly, she also owns a key pair which has
been freshly generated by herself.
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j ,Kp P ∋ K−1

p

TLS (authentication of P)

J ∋ Kjp P ∋ Kjp

{Kj}Kjp

n ∈R {0, 1}∗
{n}Kjp

{{H(n)}K−1

j }Kjp

{CertPJ }Kjp

msc Account Creation Protocol

(a) Account creation protocol
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(b) Authentication process

Fig. 3. Two important protocols between a user and a payment instance

The protocol starts with an establishment of a TLS connection. We assume
that an establishment of a TLS connection results in a fresh symmetric key
which is known to both parties. It is important to mention that only the user
authenticates the payment instance.

After the establishment process of the TLS connection the user sends her
public key encrypted with the session key to the payment instance. The payment
instance checks if the key has already been used. If the public key is unknown to
the payment instance, it generates a random challenge which is encapsulated in
a XML message. After its encryption the encrypted XML messages is sent back

The original publication is available at www.springerlink.com
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<Challenge><DontPanic version="1.0">iNYpjACH7[..]</DontPanic></Challenge>

Fig. 4. An example for an unencrypted challenge used in the protocols

to the user. The user hashes the decrypted message including the <DontPanic>
element of the challenge (see Fig. 4). In the following step the user signs the
result with her private key and sends it back to the payment instance. The
response to the challenge aims to convince the payment instance that a private
key exists which corresponds to the transmitted public key. Thus, if the payment
instance is able to verify the signature of the hash, it can assume that a private
key exists which corresponds to the received public key. However, this does not
necessarily mean that the corresponding communication party owns that key.
If the signature is verified successfully the payment instance creates an account
and a corresponding account certificate (Fig. 5) which is signed by the payment
instance with its private key K−1

p . The account certificate includes the ID of
the payment instance, an ID representing the account, a timestamp and the
public key Kj . The certificate is sent to the user encrypted with Kjp. We denote
the account certificate with CertPJ . The subscript indicates the owner of the
certificate/private key and the superscript shows who has signed the certificate.

<AccountCertificate version="1.0">

<AccountNumber>160520966610</AccountNumber>

<BiID>ECD365B98453B316B210B55546731F52DA445F40</BiID>

<CreationTime>2009-04-01 13:37:29.968</CreationTime>

<JapPublicKey version="1.0">[..]</JapPublicKey>

<Signature>[..]</Signature>

</AccountCertificate>

Fig. 5. An example of an account certificate

A closer look on the protocol shows that the user never proves the possession
of the session key. This leads to the problem that the session key and the user’s
public are independent. Thus, a payment instance cannot know if the person
who possesses the session key also owns the key pair (Kj , K

−1
j ). The general

problem is depicted in Fig. 6 for the authentication protocol which is discussed
in the following part.

4.3 Authentication at the Payment Instance

The first authentication protocol takes place between a payment instance and a
user. Its objective5 is to do a mutual authentication between both parties. As
5 The objectives of the protocols are not stated in the literature, therefore we need to

assume reasonable objectives for the protocols.
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precondition we assume that a user possesses an account certificate. Additionally,
we assume the payment instance to be responsible for the user’s account. Fig.
3(b) shows the protocol with the help of a message sequence chart.

The protocol starts, similar to the previous protocol with the establishment of
a TLS connection. During the establishment phase only6 the user authenticates
her communication partner. The execution of a TLS handshake results in a fresh
session key known to both parties.

In the next step the user sends the signed account certificate to the payment
instance which verifies the certificate. If this was successful the payment instance
creates a challenge and sends it encrypted with Kjp to the user. When the user
receives the message she decrypts the challenge, creates a hash of the message
and signs the result with her private key. Afterwards the user sends the result
encrypted with Kjp to the payment instance. After the payment instance has
checked the result, an encrypted confirmation is sent back to the user. This
facilitates the authentication process between the payment instance and the
JAP.

An analysis of the protocol shows that it faces the same problem as the
account creation protocol (see Fig. 4.2). It does not guarantee that the session
key and the private key are owned by the same principal. Due to this a third
party can claim the ownership of a user’s account even if she does not own the
private key (see Sec. 4.6). Fig. 6 points out the general problem of the protocol.

Strange JAP

J

Malice

M

Payment Instance

P

J ∋ CertPJ ,K−1

j A ∋ Kp,Kmp P ∋ Kmp,K
−1

p

CertPJ {CertPJ }Kmp

n ∈R {0, 1}∗{n}Kmpn

{n}K−1

j {{n}K−1

j }Kmp

msc Problem with the Authentication Protocol

Fig. 6. The general problem of the authentication protocol.

4.4 Charging of the Account & Balance Check

The charging account as well as the balance check protocol are built on top of
the authentication protocol. Thus, both protocols assume that each party owns
6 Please note, we are not the authors of this protocol, we only describe the protocol.

Thus, the reasons for the design are unknown to us.
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the session key. Additionally, they require that both participants are mutually
authenticated. All messages which are exchanged during the protocol runs are
encrypted with the afore negotiated session key.

The purpose of the charging account protocol is to provide the user with a
transaction ID. The transaction ID can be used by the user as subject for the
necessary money transfer, e.g. by a bank transfer. In the rest of the paper this
protocol remains unaccounted for.

In the case of the balance check the user sends a balance check request to
the payment instance. As a result she obtains a document stating the current
status of the account. The document includes amongst others the amount of used
traffic, the remaining credits and a signature of the payment instance confirming
the correctness of the data.

4.5 Mix Authentication

The protocol takes place between users and an accounting instance. Since this
paper deals with the payment protocols of AN.ON, an analysis of the underly-
ing anonymization and authentication protocols is out of scope. We assume that
they work correctly and that the authentication protocol authenticates the mix.
As for the TLS protocol we assume that it results in a shared and valid session
key between both parties. In addition we assume that only the mix side is au-
thenticated. If the assumptions for the mix authentication protocol are correct
is subject of further research.

For the mix authentication only the public keys of the payment instance and
the accounting instance are required on the user’s side. It does not require any
secret on the side of the user.

4.6 Payment Initialization

Presentation of the Payment Initialization Protocol The payment ini-
tialization protocol requires a successful run of the mix authentication protocol.

A run of this protocol aims to verify that a user is in the possession of a
valid and charged user account. Hence, a user needs to provide an accounting
instance with the user’s account certificate. In addition, a user needs to prove
the possession of the corresponding private key. In order to verify that a user’s
account is charged the protocol requires also the involvement of a payment in-
stance. This is due to the fact that an accounting instance does not have the
knowledge about the current status of a user’s account.

Fig. 7 presents the protocol between an accounting instance and a user. The
protocol requires a user to possess an own key pair, an account certificate for
the public key, the public key of the payment and the accounting instance. A
payment instance only knows the public key of the accounting instance, the user’s
public key and its own key pair. Lastly, an accounting instance needs to own its
key pair and the public key of the payment instance. In Fig. 7 it also holds a
so-called cost confirmation. Such a cost confirmation7 attests that the user has
7 It can also be seen as a digital coin.
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Fig. 7. The payment initialization protocol.

bought traffic from the accounting instance. It contains the overall traffic which
a user has consumed on a cascade, an ID of the user’s account, an ID of the
responsible payment instance and an ID of the cascade for which the certificate
was issued. Additionally, it contains a list of hashes referring to price certificates
of the mixes in a cascade. Finally, it includes a signature of the user.

Price certificates or the hashes of them are needed for the accounting process
between a payment instance and the operators of a cascade. It indicates how
much money each operator of the cascade receives by anonymizing a GB of
traffic. However, the price a user pays for each anonymized GB does not depend
on the certificates, it solely depends on the rate which was agreed between the
user and the payment instance. Thus, we do not discuss this in greater detail.

For the protocol run in Fig. 7 we assume that the user already bought some
traffic on the cascade in a prior session. Thus, the accounting instance already
holds an old cost confirmation of the user. A cost confirmation is denoted by
CCY

(X,n). It means that the cost confirmation is issued by a principal Y for a
principal X and n is a sequence number for the confirmations. The higher the
sequence number the more current is the confirmation.

In the first part of the protocol two session keys are created between the
participants. The first session key (Kja) is established between the JAP and the
accounting instance with the help of the mix authentication protocol. The second
one (Kap) is created with a TLS handshake between the accounting instance and
the payment instance.
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Please note, only the accounting instance verifies its communication partner
during the second key establishment process. Thus, the payment instance does
not know if it talks with the accounting instance. For both keys (Kap, Kja) we
assume that they are valid and uncompromised.

In the following steps the user sends her account certificate encrypted with
the session key to the accounting instance. The accounting instance checks the
signature of the certificate with the public key of the payment instance. If this
succeeds the accounting instance generates a random challenge and sends it to
the user. After the user has received the challenge she signs the challenge with
her private key (K−1

j ). Subsequently, she sends the result back to the accounting
instance which verifies the user’s signature. If this also succeeds the accounting
instance needs to distinguish two cases.

In the first case the user has already used the cascade. Thus, the user has
already issued a cost confirmation which can be fetched from the database of the
accounting instance. Additionally, the accounting instance retrieves the amount
of unused traffic (bal(J, A)) which has been bought in a previous session. Both
information will be sent encapsulated in a so-called pay request to the user.
When the user receives the pay request she compares the provided information
with her own information. If both information correspond to each other the user
creates a new signed cost confirmation on basis of the information.

In the second case the user uses the cascade for the first time. Due to this
the accounting does not hold any former cost confirmation which it can present
to the user. Instead of an old signed cost confirmation the accounting instance
sends a unsigned cost confirmation. The unsigned cost confirmation informs the
user about some information which needs to be included in the signed version.
Basically, this includes the price certificates of the mixes within the cascade, the
account number, the ID of the cascade and the number of bytes the user has
to buy in advance. The latter needs to be verified by the user if it is a valid
(and acceptable) value. If this value exceeds an upper bound8 the user will not
continue the payment initialization process. In addition to the proposed values
the user needs to add the ID of the responsible payment instance to the unsigned
cost confirmation. Now she only needs to sign the prepared document. Once this
is also done, the user has created the initial cost confirmation.

After everything is checked, created and signed the user sends the cost con-
firmation back to the accounting instance. The accounting instance verifies the
signature of the confirmation and checks if the provided information matching
the minimum requirements with respect to the amount of prepaid bytes.

Due to the fact that the accounting instance is not able to check the balance
of the user’s account, it needs to contact the payment instance. The payment
instance can decide with the help of a cost confirmation if the account has enough
credits left. In order to consult the payment instance, the accounting instance
forwards the cost confirmation to the payment instance.

The payment instance verifies the cost confirmation and checks if the account
of the user has enough credits left to settle the received cost confirmation. If

8 Currently this upper bound is at 3 MB.
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this is the case the payment instance sends back a confirmation that the cost
confirmation was valid and is now settled. When the accounting instance has
received a confirmation that the cost confirmation was valid, it confirms this
to the user by sending a confirmation message: <LoginConfirmation code="0">AI

login successful</LoginConfirmation>. This confirmation is also encrypted with
the session key.

Analysis of the payment initialization protocol During the payment ini-
tialization phase the accounting instance provides the user with the unused but
paid traffic volume. This amount of bytes is represented by bal(J, A) in Fig. 7. A
possible problem arises if the user does not track the number of bytes which are
paid but haven’t been used. In this case the accounting instance is able to betray
the user. However, we will not address this possible problem in this paper.

Another issue arises due to the fact that in the current protocol version the
confirmation of the payment instance is not linked to the cost confirmation which
was handed in by the accounting instance. Thus, a replay might be possible under
some special conditions, e.g.:

1. the accounting instance hands in multiple cost confirmations during a single
TLS session, and

2. the block cipher operates in the electronic code book(ECB) mode.

Under these conditions an attacker is able to replay an old confirmation of
the payment instance to betray the accounting instance. We believe that it is
risky to rely on such details. A possibility to address this is to return a document
which refers uniquely to the cost confirmation. The document is signed by the
payment instance. This improves the protocol in two ways. Firstly, it circumvents
a replay attack, sine the message cannot be used to acknowledge another cost
confirmation. Secondly, a signed document gives the operator the possibility to
proof later on that the payment instance has confirmed the cost confirmation.
Another advantage might be that the encryption between the payment instance
and the accounting instance becomes unnecessary. However, this needs to be
checked in more detail.

A closer look on this protocol shows that it uses the same authentication pro-
cess as the authentication protocol between the user and the payment instance.
In combination with the problem sketched in Fig. 6 the accounting instance is
able to claim the identity of a user.

In order to mount the attack, the accounting instance needs to wait until
a user connects to the cascade. Fig. 8 sketches the attack. As in the normal
protocol, the process starts with the mix authentication process. The accounting
instance authenticates itself to the user. Up to here the accounting instance
behaves like an honest one. The attack starts after the user has provided the
accounting instance with the user’s account certificate. Instead of generating a
random challenge, the accounting instance establishes a TLS connection to the
payment instance which is referred to in the account certificate. Note, for this
operation the malicious accounting instance does not need any secret data.
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msc Sketch of the Authentication Attack (A claims to be J)

Fig. 8. Accounting instances claims to be the user.

When the TLS connection is established the accounting instance simply for-
wards the received account certificate of the user to the payment instance. The
payment instance answers in conformance with the protocol with a challenge.
The challenge is forwarded by the accounting instance to the user who subse-
quently provides the accounting instance with a signed version of the challenge.
The answer is forwarded by the accounting instance to the payment instance.
Since the response of the challenge includes a valid signature of the user, the
payment instance will confirm the successful login to the accounting instance.
Thus, the accounting instance is authenticated in the name of the user even
though it is not in possession of the user’s private key.

Due to the authentication at the payment instance the attacker is now able
to retrieve the user’s account status. Such an account status contains the number
of bytes the user has consumed on the different cascades. In addition it includes
the last cost confirmations the user has issued for the different cascades. If any of
the cost confirmation has been created without the consumption of traffic9, the
accounting instance is able to use the cost confirmation to consume the bought
traffic of the user. In order to do this the malicious accounting instance needs
to wait until the user connects again to the cascade. Afterwards it can mount
a similar attack as the one described by Fig. 8. The only difference is that the
accounting instance does not connect to the payment instance, but rather to the
accounting instance which is referred to in the cost confirmation. In section 5
we will deal with the underlying reasons for the attacks.

4.7 Data Exchange and Repurchase of Traffic Volume

The protocol is built upon the payment initialization protocol. Thus, it assumes
a shared session key and some amount of confirmed prepaid volume for a user.
9 This is the case, if the user connects to the cascade but does not send any further

packet.
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Therefore the user is able to transfer mix packets over the cascade. The client as
well as the accounting instance keep track of the number of packets which are
transmitted over the cascade.

When the amount of prepaid bytes drops under a predefined lower limit the
accounting instance sends a new pay request. The pay request is similar to the
pay request which is sent during the very first connection to the cascade. Thus,
the pay request contains the account number, the ID of the payment instance, the
price certificates of the cascade and the (minimum) number of bytes a user needs
to confirm. The pay request notifies the client to send a new cost confirmation
in order to further use the cascade.

As soon as the client receives such a pay request it checks the received data,
adds the ID of the responsible payment instance and compares the number of
bytes which need to be confirmed. Normally, the user has already transmitted
additional packets since the pay request was issued. Therefore the user usually
confirms more than the pay request requires. The result of this process is signed
with the user’s private key and sent back to the accounting instance.

In contrast to the payment instance the accounting instance can choose
whether it forwards the new cost confirmation directly to the payment instance
or it waits to submit a later cost confirmation to the payment instance. In the
latter case the accounting instance only needs to hand-in the latest cost confir-
mation. Obviously, this is a trade-off between resources which are needed and
the possible loss which arises if a client is malicious. However, the safest way is
to submit the cost confirmation directly. Hence, the protocol is equal to the last
part of the protocol in Fig. 7. Although, there are some interesting problems, for
example what happens if the confirmation of the payment instance arrives after
the client’s volume is consumed. We will not further discuss them, since they do
not directly affect the protocol.

5 Reasons for the Attack

In the previous section we pointed out some weaknesses of the protocols. The
first weakness of all the authentication protocols is that a payment instance and
an accounting instance respectively does not know if the session key is possessed
by the same person who also owns the private key to the account. The second
problem is the fact that the challenge-response procedure is transferable to other
protocols. The combination of both weaknesses enables an accounting instance
to claim the user’s identity and at a later stage consume some of the bought
traffic. However, the attack is not only restricted to the accounting instance.
Also a malicious payment instance is able to mount the attack. In order to fix
the protocols both weaknesses must be addressed.

The transferability of the challenge-response procedure can be avoided by the
modification of the response. We propose to add the ID of the challenger and an
identifier of the protocol which uniquely identifies the protocol and its version.
We justify this with the following reasons. Firstly, an ID of the protocol avoids
that the challenge can be transfered to another protocol or to an older versions
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of the protocol. Secondly, the ID of the challenger is added to the response to
avoid that another malicious instance can use the response in another run of the
protocol, for example the malicious instance can choose the same key as the JAP
and therefore replay the messages. This attack would be similar to the one in Fig.
8. However, we do not add the responder’s ID since this would not strengthen
the properties of the protocol. This is due to two reasons. Firstly, an attacker
who is able to read the challenge is probably also able to arbitrarily change the
unprotected challenge. Hence, he can also substitute the ID of the responder
by the false one. Secondly, the signature in the response implicitly decodes the
ID of the responder. If the verifier of the response is honest then he would
reject the response to the challenge if it is not verifiable with responder’s public
key. If the verifier is malicious he can accept the response anyway. We added
the information to the response and not to the challenge, since an additional
information in the challenge brings no additional security. Nevertheless, it might
be useful to add the information also to the challenge due to practical reasons.

In the following we address the problem that arises due to the independence
of the session key and the private key. One solution is to use the client au-
thentication capabilities of TLS. Unfortunately, this is not a solution for every
used protocol of the payment concept. For instance the payment initialization
protocol (and the underlying mix authentication protocol) is not based on TLS.

JAP

J

Server

S

J ∋ K−1

j ,Kp, CertPJ , IDprt S ∋ Ks,K
−1

p , IDprt

Initialization Protocol

J ∋ Kjs S ∋ Kjs,Kj

n ∈R {0, 1}∗n

{H(S, IDprt, n,Kjs)}K
−1

j

{confirmation}Kjs

msc Fix for the Authenticiation Protocol

Fig. 9. A fix for the (user) authentication protocols

Another solution is to modify the response in the challenge-response proce-
dure in order to bound the session key to the user’s public key. Instead that the
user hashes only the “normal” response, she can additionally include the session
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key to the information which she needs to hash and sign. The modified version
with all of our changes is shown in Fig. 9.

In Fig. 9 the initialization protocol represents the messages which are neces-
sary to authenticate the server and to transmit the user’s public key. The server
is either the payment instance or the accounting instance. The fixed version of
the challenge-response procedure should replace the challenge-response parts of
the protocols presented in previous section. It mainly fixes the two encountered
weaknesses of the authentication protocols. In addition we have skipped unnec-
essary cryptographic operations. Neither the challenge nor the response needs
to be encrypted with the session key Kjs. The confirmation message represents
the different possible replies of the server. Obviously, it depends on the specific
protocol which kind of reply the server sends to the user.

If we assume that the client does not blindly signs data and the server side
knows that the public key belongs to the user, then the server side can conclude
that the user owns the session key and the private key which corresponds to
the account certificate. This can also be formalised with the help of the BAN
logic[5,4]. We assume the following four preconditions:

1. S |≡ #(n) : the server (S) believes that his challenge is fresh.

2. S |≡ Kj7→ J : the server believes that Kj is the public key of the user J.

3. S / J
Kjs←→ S : the server has once seen the session key.

4. S / n : the server has once seen the challenge he has generated.

Finally, we need to model the idealized response from the client to the server. We
skipped to model the other messages, since they are not needed for the claim we
want to show. Please note, we have skipped the outer encryption with the session
key, it does not add any more security. The idealized version of the response is:

J → S : {H(J
Kjs←→ S, n)}K−1

j (1)

By applying the postulates of the BAN logic we can show S |≡ J |≡ J
Kjs←→ S:

S |≡Kj7→ J, S / {H(J
Kjs←→ S, n)}K−1

j

S |≡ J |∼ H(J
Kjs←→ S, n)

, S / J
Kjs←→ S, S / n

S |≡ J |∼ (J
Kjs←→ S, n)

,
S |≡ #(n)

S |≡ #(J
KjsS←→ S, n)

S |≡ J |≡ (J
KjsS←→ S, n)

S |≡ J |≡ J
Kjs←→ S

Basically, this is the condition we want to achieve with our modification. Now
the server side can assume that the client believes in the session key. Certainly,
the result is only valid if prior server authentication protocol results in the as-
sumptions 2 and 3.
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6 Conclusion

AN.ON’s payment concept utilizes the property of a cascade, every mix in a
cascade transfers the same amount of traffic, to establish their prepaid payment
concept. In this paper we analysed the most important cryptographic protocols
of this interesting approach. The analysis of the protocols showed that they con-
tain several weaknesses which need to be addressed to provide a fair service. In
addition we showed some practical implications of the weaknesses. For instance
we showed that an accounting instance can abuse its position to consume some
portion of the traffic the user has bought on different cascades. Beside this we
also propose a solution which fixes the encountered weaknesses of the protocol.
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